網頁

2010年2月12日 星期五

如何選擇渦輪

如何選擇渦輪

Turbo 這種離心式壓縮機, 只能在某個不大的範圍內提供最佳的效率, 所以和引擎的搭配就很重要. 雖然坊間的改裝百百種, 同一具引擎, 大幾號/小幾號的turbo都拿來用, 乍看似乎也沒什麼問題, 但, 那畢竟是土法煉鋼, 嚐試錯誤. 另, 許多改裝雜誌也總是喜歡刊登誇張的改裝例, 拿那種拖車頭用的turbo塞在喜美的引擎室裡嚇讀者, 好像這樣就很厲害似的, 也讓許多人誤以為越大就越猛, 這些當然都是誤導…

先來看一些術語:

A/R值

這是描述compressor housing 和 turbine housing的型態比例. 蝸牛殼形狀的管道, 管道每一處的截面積(A), 和該處與housing中心所成的半徑® , 必須保持衡定, 其比值便是A/R值. 看圖:




由此可見, 以compressor housing來說, A/R就描述了壓縮空氣在蝸牛殼內 ‘擴張’ 的情形, A大/R小, 就表示蝸牛殼繞的短, 管徑擴張的快, 所以A/R值大的compressor housing, 吸入的空氣在相對較短的管道內就被 ‘甩’ 出來, 加上管道截面積相對較大, 也表示高流量的傾向, 因此A/R大的compressor housing就適於高流量的用途, 如高轉大馬力的引擎, 或者, 相同的引擎, 使用大A/R Compressor housing的turbo, 便傾向高轉馬力, 但中低轉速的反應較差. 反過來說, A/R較小的, 就表示蝸牛殼繞的長, 擴張的慢, 這就變成壓力較容易蓄積, 在低流量時就能產出大壓力, 適於著重中低轉實用性的引擎.

而對turbine housing 來說, 情形也類似, 只是氣流方向不一樣. 大A/R的turbine housing, 有相對較大的管道, 而在較短的路徑就繞完了, 廢氣作用在turbine上的時間較短, 很快就排出, 這便造就了較低的背壓和較高的流量. 而小A/R的情形, 就變成截面積較小的管道, 圍著turbine繞的比較長, 因此有更多的廢氣能量得以作用在turbine上, 也就能很早就把turbine帶到高轉速, 但因為較小的截面積和較長的管道, 因此產生的背壓較大, 不利於高流量的用途.


Trim

暫稱為縮減率好了. 描述了葉輪的型態比例, 定義為:

TrimCompressor = (Inducer Diameter)2 / (Exducer Diameter)2 * 100

TrimTurbine = (Exducer Diameter)2 / (Inducer Diameter)2 * 100

看一下圖好了:






這是兩個compressor wheel, 所謂的inducer, 就是氣流進來的地方, 也就是圖上朝上、直徑較小的部分, exducer, 就是氣流甩出去的地方, 就是朝下直徑較大的部分. 所以, trim的意思就是小端和大端的直徑比例, 只不過不是直接比, 而是平方後再乘上100, 有點百分比的味道.

Turbine一樣也有大小端, 比起compressor, 一般來說大小比較相近:





(以上3圖片取自HOT ROD雜誌線上版, http://www.hotrod.com)

在這邊, 氣流進來的地方是外圍, 出去的地方是上面, 所以式子就倒過來, 其實不用管哪邊進來/出去, 直接看大小就好了, 小端在分子, 大端在分母. 因此, trim值理論上就是0~100, 但不大可能那麼極端, 常見的compressor trim在50~60, turbine trim則在70~80的範圍.

那麼, 這個值代表什麼意義? 由定義可知, Trim越大, 葉輪的大小端直徑就越相近, 以compressor來說, 就表示吸入空氣的那端相對較大, 能抓進更多的空氣, 流量更大. 而較小的trim, 相對的, 就是小端較小, 另一個角度看, 也能視為大端更深入compressor housing外圍的狹窄端, 這樣一來就能提供更強的壓縮, 而產出高增壓. 以turbine來說, 情形類似, 大小端相近, 表示大端相對不大, turbine housing裡的氣流受阻較小, 背壓低, 流量大, 但同時轉移到turbine上的能量也較少.

所以, 和A/R值一樣, 都是折衷妥協, 無所謂越大越好或是越小越好, 大部分時候都適中的比較能夠符合我們的需要.

Compressor map

這個圖表描述了compressor在壓力和流率的條件下可得的壓縮效率, 更重要的, 描述了此turbo的操作範圍. 在圖上, 有一圈一圈的島狀區域, 表示了在此壓力/流率範圍內, 都可以有相同的壓縮效率.




(此為Garrett T04E 60 Trim的compressor map, 圖片取自Performance Techniques, http://64.225.76.178/main.htm )

圖的左側, 在操作範圍的左邊邊線, 稱為surge line, 也就是渦輪在低流率/高壓力的範圍工作, 跨出這條線, 表示引擎吞不進那麼多空氣量, 但增壓過大, 此時, compressor wheel的inducer(進氣端)會失速, 同時當然壓縮效率也大減, 長期在此區域運作, 軸承將劇烈磨損.

另一端, 在圖的右邊邊線, 稱為choke line, 表示在特定壓力下此turbo流量的極限, 超過這個範圍, compressor流量飽和, 無法提供足夠的壓力, turbo轉速急劇升高, 產生高熱, 壓縮效率當然馬上就掉的很低, 這樣個操作區域也會使turbo本身壽命大減, 同時也會讓整個引擎像是被掐住一樣高轉上不去.

所以, 在選擇turbo, 或者說選擇compressor時, 這個圖表就非常重要, 是主要的參考依據. 那麼, 怎麼看? 怎麼用?

首先要訂立條件, 也就是什麼引擎, 多少轉速下需要多大的增壓等等…

舉例, 一具2.0排氣量, 4行程引擎, 在7500rpm斷油前最高到20psi的增壓

Pco (Compressor出口壓力)
=增壓值 + 大氣壓力 + 管路/中冷器的壓降 = 20 + 14.7 + 1.5 = 36.2psi
在此, 中冷器壓降取1.5psi, 算是樂觀的估計, 或者是蠻大的中冷器, 若是小流量/小體積的中冷器, 這邊的壓損會比較大. 或者你也可以看你用的中冷器是否有規格數據, 就直接套進來.

Pr (壓力比) = compressor出口壓力/大氣壓力 = 36.2/14.7 = 2.463

Di (compressor和intercooler之後的空氣密度)
= (增壓值 + 大氣壓力 ) / [ R * 12 * (460+進氣溫度)]
= (20+14.7) / [53.3*12*(460+130)]= 0.000009195lb/in3

在此進氣溫度設為130 F
R=53.3, 是個常數, 12是為了將單位轉成英吋
(這個計算例是直接從書上抄過來, 因為涉及慣用單位, 所以像華氏溫度和英吋等都保留, 以免換算錯誤, 常數也會不同. 溫度加460是為了把華氏轉成絕對溫度)

Mf (空氣流率) = 密度* 排氣量(cubic inches) * (rpm/2) * VE
=0.00009195 *122 * (7500/2) * 0.9 = 37.84 lb/min

在此, 排氣量轉成立方吋, VE取為90%, 也是樂觀值, 但一般較新的多汽門引擎應該都能到達此數, 若是較老的每缸2汽門的引擎, 可以取80%.

CMf (修正後的空氣流率)
= 空氣流率 *√(Compressor進氣溫度/545) / (大氣壓力/修正後的進氣壓力)
= 37.84 * √(545/545) / (14.7/13.95) = 35.9 lb/min

在這裡, 流率依據溫度和壓損做修正, 溫度取545, 相當於85 F, 為了計算方便, 就保持這個值, 而13.95psi是Garrett建議的值, 是預估進氣經過一般典型的空氣濾芯後扣掉壓損所剩的壓力.

好了, 兩個關鍵的值: 壓力比=2.463、流率=35.9 lb/min , 這樣我們就能套回上面那個compressor map看看:






這是Garrett T3 60 trim的compressor, 把我們上面的數值標到座標上, 明顯的就跑到右上方去了, 在choke line以外, 這個情形此turbo的流量不足, 空氣量不夠引擎全力施為的時候吃. 然後, 若我們把上式的引擎轉速減半, 或者隨比例調降, 比如說 十幾 lb/min的空氣流率, 同時又要維持最大增壓, 此時的座標又跑到左邊的surge line之外, 就表示中低轉速時, 又掉到另一端不正常的操作區域, 拼命發熱去了, 實在不妙. 對於這個引擎來說, 此turbo實在太小顆了.

換一顆大turbo看看:






這是Garrett T66, 把35.9 lb/min 和 2.463標到圖上, 幾乎剛好在surge line上, 若把較低轉速的流率也標上, 那更是在surge line之外, 表示此turbo在引擎絕大部分的操作轉速內都處於流量過低, 壓力太大的情形. 也表示引擎吞不下這顆turbo能吐出的氣流, 這樣的組合當然也不好.

再換一顆:






這是Garrett T04E, 46 trim compressor, 把35.9和2.463標上去, 大致落在壓縮效率次高的74%的區域內, 將流率調低, 保持壓力, 座標往左拉, 就會落到最佳效率的區域, 這樣粗略的看起來, 在3000多rpm就能有效達到最大增壓, 隨後會有部分轉速域落在最佳效率區, 並且在拉到紅線時, 引擎的流量還在此turbo的健康操作區域. 所以這個turbo很適合這個引擎在這個增壓值的操作.

(以上所有compressor map皆取自Performance Techniques, http://64.225.76.178/main.htm )

再來, turbine的選擇, 則有很大的成分須要從A/R值和trim值來選擇, 雖也有所謂的turbine map, 但這邊的壓力比和流率比較難算, 會隨著排氣系統的背壓和調校條件而有較大的變動. 再加上選購turbo時, 他們多半都是配好的, 以compressor的特性來挑turbo, 選出來的應該就大致不差, 引擎的出力至少是大致合理的曲線, turbo本身也在健康的操作區, 而turbine這頭的特性, 便左右了lag和背壓, 背壓又直接影響了VE.

上面提過的, A/R和trim大的, 高流量特性佳, A/R和trim小的低轉反應佳, 那麼該如何搭配/選擇? 若以折衷角度看, 寧取大一點的A/R配小一點的trim, 這樣能保持較好的流量能力, 背壓小一點, VE就得以維持, 讓小的trim去提昇運轉加速度. 一般來說, 這樣的組合成功率較大.

另, turbine葉片的寬度也有影響, 稱為B-width, 在下圖來看就是 ‘高度’:






兩個直徑類似的turbine, 一個的葉片寬度小, 另一個明顯較大. 寬度小的容許流量較低, 但加速快, 反應較佳, lag較小. 而寬度大的, 流量大, 高轉效率佳, 但反應較慢, lag較明顯. 這可和trim一並考慮.

有些turbo廠牌可以讓你自由選擇數種compressor wheel和turbine的組合, 稱為混血turbo (Hybrid Turbo), 有些搭配的範圍還蠻大的, 硬要惡搞, 可說沒有限制. 但以健康操作範圍來看, 兩個葉輪的直徑相差不要超過15%. 一般來說, compressor通常會比turbine大一些, 若比例過於懸殊, 那麼就會有turbine帶不動compressor的問題, lag變大, 反應遲鈍, 雖然大compressor能吐出高流量, 但turbine帶不動它, 一樣白搭.

Turbo的計算/選用, 不外就是壓力比, 流率, 上面的數學式中所用的單位多為英制, 剛好也配合turbo規格資料慣用的單位, 套起來反而方便. 套公式之前, 先把我們習慣的公制單位換成英制再算即可. 上面的例子, 算是中庸偏高的數值, 一般若是N/A改turbo, 通常不會一下子就打到20psi的增壓值, 你可以自行設定目標, 再把數字套入計算即可. 只要壓力比和流率落在compressor map的健康操作範圍, 就算是安全的選擇, 成功率很高.

當然, 若是購買完整套件, 廠家多半都幫你算好了, 也會選用適當的turbo, 不須擔心, 倒是有機會可以找出資料來驗證一下.

幾匹馬力?

好了, turbo選好了, 那麼可以得到多少馬力?
可以簡單的從空燃比來反推. 前面算過了空氣流率為35.9 lb/min, 以最高性能的a/f=12:1來看, 我們需要的燃油流率便是 35.9 / 12 = 2.99 lb/min

B.S.F.C (brake specific fuel consumption) = 0.5 lb/hr 這個意思是說, 每產生1匹馬力, 每小時需消耗 0.5磅的燃油. 這是一般的估計值.

所以, 2.99 lb/min = 179.5 lb/hr, 在除上 0.5的BSFC
就等於 359 匹馬力.
不錯吧. 2.0排氣量打20psi ‘就’ 可以有300多匹馬力. 在你踩下油門時, 絕對是很有 ‘感覺’ 地!!

其他考量

進氣量因為增壓而大增, 供油自然也要隨之增加. 上面的式子已經算出了所需的燃油流率, 自然就能帶出所需的汽油泵和噴油嘴的的規格, 只要單位的換算小心一點, 不至於太難算. 當然, 在選用汽油泵時, 壓力/流率要有足夠的寬裕, 不能太緊繃, 例如上面的a/f是以12:1來算, 實際上, 在高增壓下, 有可能會需要濃到10:1來降溫, 這類的寬裕量一定要考慮到, 也要考慮此泵會不會在大流量時壓力保持不住, 最好有壓力/流率圖表可供評估, 或公證單位的測試報告. 而噴油嘴的流率也要記得不可超過80%的Duty cycle和選用合適的驅動阻抗.

而進排氣的管道上, 也有不同的考量. 進氣道部分, 如compressor出口到intercooler, 然後一路到進氣歧管, 事實上口徑不宜太大, 300匹馬力以下的, 宜在2” 左右, 300匹以上, 則可到2.25”~2.5”, 太大的管徑, 會造成太大的內容積, 減慢增壓的反應. 而路徑當然越短越好, 彎角越少越緩越好, 能做些隔熱也是個好點子, 或者用本身比較能隔熱的材質也很不錯. 排氣部分, 則是管徑大一點的好, 從1.6 turbo起, 便需要2.5”以上的管徑, 2.0 turbo, 最好有3”以上, 大一點的背壓較低, 有利於turbine的運作, 效率較佳, 背壓降低, VE又得利, 一舉數得.

在較高背壓的系統, 就是小號turbo的情形, 背壓通常很大, 若又用它硬打高增壓, 則背壓更是水漲船高, 此時, 背壓就會高過增壓很多, 在汽門重疊的短暫時間裡, 會發生逆流的現象, 這當然很糟糕, VE一下子小了不說, 高溫的排氣反灌回來, 燃燒室溫度會急劇升高, 嚴重爆震、活塞融毀的慘劇便不遠了. 這種情形, 則不該改用大重疊角的hi cam, 會使此情形惡化, 重疊小的原廠cam反而是較佳的選擇. 若沒有把握保持夠小的背壓, 還是先不要改cam.

點火部分, 若是直接點火, 跳火能量較大, 比較能應付增壓後較濃的油汽, 通常問題不大. 但若是分電盤式, 則可能在高增壓下會有miss fire的現象, 此時加強點火系統便有其必要. 換用較大容量的coil, 或整套強化的點火套件, 會有不錯的效果, 最好還能調整正時, 以搭配增壓值微調到最佳提前. 若其他都沒改, 至少換冷一號的火星塞, 以免溫度過高, 提高爆震的發生率.

噴水也是增壓引擎一個不錯的配件, 可提供缸內的intercooling, 大幅減低進氣溫度, 使引擎在高增壓運作下更能保持穩定安全的缸壓, 也因此不需過度供油, 能保持在最佳出力的12:1 a/f值, 點火也能提前到更佳出力的範圍, 汽化後的水蒸氣排出後甚至對驅動turbine還有一定的貢獻, 更加提昇效率, 一舉數得.

結論

渦輪增壓大致介紹完畢, 由這些資訊可知, 只要你的引擎本體受的了, 或者已做過適當強化, 那麼加上渦輪絕對是產生大馬力的最佳捷徑. 做好了週邊的配合, 調校妥當, 在你踩下油門的剎那, 臉上自然就會浮現滿足的笑容.

沒有留言:

張貼留言